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Korteweg and De Vries [ 1 1 were the first to make an approximate invest- 

igation, in 1895, of long surface water waves degenerating into a 

solitary wave when the wavelength tends to infinity. The equation of the 

profile of these waves is expressed by a Jacobi elliptical function in 

cnr. These authors dubbed these waves “cnoidal” because of the cn sound. 

Many studies, both theoretical and experimental, have been carried out 
on cnoidal waves in recent years. 

Lavrent’ evym [ 2 1 in 1946 gave a formal proof of the existence of the 

solitary wave based on variational principles in conformal representation. 

In 1954 Friedrichs and Hyers [ 3 I put forward a simpler proof which was 

based on the general theorems of functional analysis. Littman [ 4 1 de- 

monstrated the existence of a certain class of cnoidal wave. This class 

does not include those degenerating. into a solitary wave when the wave- 

length tends to infinity. Here we give a proof of existence which is 

valid over the whole range of cnoidal waves. 

1. Definition of problem. We deal with a steady periodic wave, of 
length 2L,, moving at constant velocity c in a channel with a smooth 
horizontal bottom surface and filled with an ideal incompressible liquid. 
It is assumed that the wave is symmetrical about a vertical axis passing 

through the peak. It is a well-known fact that the velocity of a wave 
moving over a smooth horizontal bottom surface is an indeterminate 
quantity. One can define the wave velocity c, for instance, as the mean 

velocity of particles over the bottom 

930 
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Let us take a system of Cartesian coordinates which are tied to the 
wave as shown in the accompanying figure. ‘lhe motion, with respect to 

these coordinates, will be a steady state. Put tl = x1 + iy,. It is 

assumed that there is no turbulence. ‘lhe velocity potential +I &x1, yl) 

and stream function G1(xl, y1 ) will be conjugate harmonic functions, 

&) = q&, YI) + G+,, y1 ) will be a function which is analytic in 
the curved quadrilateral A,B,C,D, (Fig. ). At the free boundary the follow 

ing condition of constant pressure should hold! 

Here g is the acceleration of gravity, y1 = Y,(n,) is the equation of 

the free boundary. &cause the motion is a steady state the free boundary 

and the bottom should be streamlines 

$r = 0 for PI = 0, $1 = Q for yi = Yi (Xi) (1.3) 

where Q is the discharge of fluid through a channel cross section. In 

view of symmetry about lines A,C, and B,D, the velocities are horizontal, 

i.e. ada s = 0 along A,C, and BIBI. Therefore 

‘~1 (L,, ~1) = - ‘~1 (- L1, 1/J = d (1.4) 

where d is some constant which can easily be expressed in terms of L, 

and c. In actual fact it follows from (1.1) that CL, = d. 

We int reduce non- dimensional vari abl es 

It is obvious from this that the condition CL, = d will be satisfied. 
We arrive at the following mathematical problem, namely, to find a func- 

tion Y(x) and a function w(z) continuous over the interval (- n/X, n/X) 

which are analytic in region A BCD and which satisfy the boundary condi- 

tions 

-$-igr +vY(x)=const, for y = Y(z) ! 
W$\ 

/ (1.6) 

I@=0 for y = 0, !$==I for y=Y(s) (1.7) 

tp=f for z=+, 
T: 

P =-- 
h 

for X= -T (1.8) 

Condition (1.8) is equivalent to ‘the requirement for periodicity in a 
solution. Now let us change the variable 



932 A.M. Tcr-Krikorov 

x (241) = 0 + iz = i In v (-SE) (1.9) 

In the complex potential plane, rectangle 0 < y5 < 1, - R/X < C#J <n/X 

corresponds to the flow region; and we denote it as (S). The problem (see, 

for instance [ 3 1 1 reduces to a search for a function Ato>, analytic in 

the open rectangle (S), continuous in the closed rectangle and satisfying 

the boundary conditions 

e-0 ==e--3rsin9-fl for 9 = 1, 0 = 0 for $ = 0, 

e=o for cp=+$ 

Having solved the problem which was posed we can express the relation- 

ship between z and UJ in quadratures. Actually, from (1.9), it follows 

that 

-- 
dz = v i &(w)dw (1.11) 

We integrate, bearing in mind that x = s/x, y = 0 for q5 = R/X,$ = 0, 

and obtain 
1 * s eix (‘I& 

TI IA 
(1.12) 

Because 2 = - B/X when w = - n/X, the following supplementary condi- 
tion should be fulfilled: 

Ala 

?c -= 1 -$ 
h TV s eT(') cos 8 (t) dt 

0 
(1.13) 

2. Green's function for the linear problem. Let us consider 

the following boundary-value problem for harmonic functions: find func- 

tion 6(n, y), harmonic in the open rectangle (S), continuous in the 

closed rectangle and satisfying the boundary conditions 

8, -e = f ((P) for 11, = 1 (2.1) 

e=o for 9 = 0, e=o for cp=+ $ (2.2) 

where f(4) is an odd periodic function with period 2n/X. A solution of 
this problem is given in Littman’s article [ 4 1. 

ZlA 

e= s ’ G(v, 4, cp’)f ($I@‘, 
ainh nhq sin nhq sin nh.cp’ 

nhbihnli --sinhnh 
- (2.3) 

0 n=1 
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where G($, y5, $1 is a Green's function. 

If in Formula (2.3) we replace f(d) by eB3' sin 8 - 8, we find the con- 

jugate function ~($1 and put += 1, the problem posed at the end of 

Section 1 reduces to nonlinear integral equations. Littman has shown that 

these equations have solutions which decay in a plane-parallel flow when 

X z 0. Littman's result does not include the more interesting group of 

solutions which decay in a solitary wave. 'Ihis is because an analysis of 

the properties of Green's functions (2.3) is very much more difficult 

whenA+ 0 because in such cases the Fourier series degenerates into a 

Fourier integral. Below we give a transformation of Green's function into 

a sore convenient form for $= 1. 

Let A, be the roots of the equation 

t cos t - sin t = 0 (2.4) 

Theorem 2.1. Function CC+, 1, 6'9 can be expressed as 

G= 
O” 2,inhh (p’“i”h(‘p - n / h) hk 

for (9 > 9') 

Proof. Note first of all that the following expansion 

fractions is valid: 

sinh 2 

zmahz -dnh z =$+ 2g z*:LXz 

Replace z by nX to obtain 

*inh nJ, 
nA_shnh --.tinh 

in elementary 

(2.6) 

(2.7) 

If we insert the expansion into (2.3) and change the order of s\nma- 

tion (the validity of this can be proved), we obtain 

G = ; i ~0s nh (9 - CP’)-;~C~S nh @P + VP’) + 

co 
+;; x (a, / h) [cos d (q - v’) $ cos nh (0 + q’)] 

a, [IL2 + (h, / a)? (2.8) 
k=l n=l 

We now make use of the following trigonometrical expansions: 
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(2.9) 
(-n<x<n) 

(2.10) 

Replace x by 1: + R and n - n in (2. lo), to obtain 

TC cash a(x-n) 
T- ainh an 

=,$+ i n+cosnx (0 < z < 2n) (2.11) 

Tl=l 

n: msha(x+n) 
-7- 62 sinh an 

=&+fj *zcosnx (-2n<z<O) (2.12) 

T&=1 

Inserting into Equations (2.9)) (2.11) and (2.12) x = A (4 f 4’)) _ 
a = X,/A, we then have 

; i cosnh(~-~‘)~Cosnh(~+(P’) = 3[min(q, cp’) 

Tl=l 

((P < cp’) 
(2.14) 

If we substitute Equations (2.13) and (2.14) in (2.8) we arrive at 
(2.5). Theorem 2.1 is thus proved. 

Theorem 2.2. lhe solution of the linear problem (2.1) can be repre- 
sented as follows for ti = 1: 

fl= -3S2f+3[1--((hln)cplLf+Af (2.15) 

where L is a functional, S and A are linear operators 

,$++,+)kk[ stihk(P’f((p’)d$+ (2.16) 

0 
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Proof. In accordance with Fomula (2.3), for $r= 1 

+. 

fl= 1 G(cp, 1, qW(p')W=[W, 1, e')l($)W+~~W, 1, cp')+'(2.17) 
0 0 0 

If we make use of Epuation (2.5) for G(+, 1, $') we obtain 

e = 3j Cp'f(cp')dtp'- 

x/h x:x 

$cp \ cp'f(cp')@'+3~ [ f(9~')4-~'+4 (2.13) 
0 0 0 

0=31 
I[ 

- +- +!- 34, 5 f(OW+ 3 [ cp'f(cp')W+ Af (2.19) 

?;/h WA 

If we now notice that 

(2.20) 

Theorem 22isproved. 

Theorem 2.3. Function r, conjugate with 8 when $= 1, can be repre- 
sented as 

T=3Fff$_5 (I- $rp)DLf-+Sf +Bf+~(~) (2.21) 

where I3 is a linear operator 

0 

whilst r(a/A) is an arbitrary constant. 

Proof: Functions r(~)/O(~) are connected by Cauchy-Riemann condi- 
tions; -boundary condition (2.11, therefore, &n be wfitten as 

If, instead of 8 we substitute its expression (2.15) and integrate 
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between n/A and 4, we arrive at (2.211. 

3. Integral expressions of the problem. First approximation. 
In order to reduce the boundary-value problem, posed in Section 1, to 
nonlinear integral equations, the following substitution must be made in 
Formulas (2.15) and (2.21): 

f (q) = eN3’ sin 8 - e (3.4) 

It is well known that an important step in the study of long waves is 
that of nelongatingn or W extending the independent variable. In a com- 
pletely formal manner we select some parameter E and subject this to the 
extension. ‘Ihe physical significance of parameter 6 will be explained 
later. Let us assume 

Cp” = E9), ~z+, e = &se* 9 IT = E2T0 , 

Sin E3eo - E38”] (3.2) 

It is evident that 

07/E. 

sj = \ 
2/o 

j (cp’) dq’ = a f j (&c(Y) i&f = swjo 
K 

S”f = &3S02 jo, sy = &2y-f0 

(3.3) 

Substitute (3.3) in ( 2.151 and (2,211, and we obtain a system of two 
integral equations 

8” = - 3S02f” + 3 (1 - $) L”f” + 2xeTf” 

TO =-co (K) + 3S031” + 3K (F - ly L”f” - ?,m?~f” - ; $5,0fc 

(3.4) 

where 

R . . 
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(3.6) 

For simplicity, the sign ROW will be omitted, in what follows. 

In first approximation we put E = 0, then Equations (3.4) yield 

8, = -3~21, + 3(1- gj[q’fo(rp’)dq’ P-7) 
0 

a0 = ~o(W + 3W, + +gi - g).~u'f,(e')W, f. = - 3~~9, (3.8) 

0 

It is easy to see that 8, = - r,,'. If we differentiate the first 

equation (3.7) twice, we obtain 

To" = 9zozo' (3.9) 

The solution of this ordinary differential equation is expressed in 

elliptical Jacobians (see 14 I) 

zo = fa2[2P - 1 - 3ka,,a(a~cp)] (3.10) 

In these expressions a and k are arbitrary constants, k is the 
modulus of the elliptical function, a can be chosen arbitrarily (t only 

affects the relation between t and the physical parameters which deter- 

mine the flow). 

For simplicity we assume that a = 2/\/ 3 and we then have 

zo = $(I - 2k") - -gkWq, k's = I-@ (3.11) 

Note also that the period K will be a complete elliptic integral of 
the first order in k. Below we will demonstrate that the system of Equa- 

tion (3.4) adnits a solution which depends on the tuo parmneters E and 

k’. 

4. Variational equations. Let us set 

8 = 80 + 68, z = To + 6z (4.1) 



938 A.M. Ter-Kr ikorov 

Notice that Expression (3.1) for f can be represented as 

f = -3re f EZfl (4.2) 

when fl is a complete function of 8, r and t. We find Sf: 

6f = -3 (rose + 0oSr) + EYJfl = 3 (zo'bz - -klse> + &26/l (4.3) 

We vary Equation (3.4) and we find 

60 = -3S26j + 3(1 -s)L6f +2nsT6f (4.4) 

82 = 62 (K) + 3S36f + f K (I- +!g)” L6f - 2ll&“V6f - pS6f (4.5) 

If we separate the linear parts of the equations (4.4) and (4.5) and 

then invert the linear operator in this manner, the problem will reduce 

to a system of nonlinear integral equations for 68 and6~, which can 

be solved by the method of successive approximations for snail values 

oft. 

Introduce variable y as 

y =16z + 2dV6f ++f 

It then follows from (4.4) that 

(4.6) 

-_Y’ = 68 - 2n&Tdf (4.7) 

If we insert this expression into (4.4) and differentiate, we obtain 

Y 
I, 

= 3S8f -iLSf (4.8) 

In this expression 

6f = S(zoy)' + 6cr, au= e26fi - 6n;s lsro'V6f - zoT6fl -f s2ro'S6f (4.9) 

Equation (4.8) can be rewritten as 

yU= 9s (roy)'+;L (zoy)'f3(S8a +;L&s) (4.10) 

However 

s (Toy)’ = TOY - (ToY)rp=K (4.11) 

We insert these expressions into bation (4.10) and obtain 
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K 

9” - 9z,y = ; + u (cp), u (cp) =3 (S 6u + f L&z), c = - 9 1 r,ydg, (4.12) 

0 

It is easy to prove that the nunber c can be chosen arbitrarily, i.e. 

the third of the Equations (4.12) does not impose any limitations on c. 

In fact, if we integrate EQuation (4.12) from 0 to K we arrive at 

y’(0)-_g’(K)-9Si;o~~~=e+i (4.13) 
0 

(j = [“(p)d+ 
0 

However, because of (4.7) y'(O) = y' MI = 0, and because of the 

second of the equations (4.12), j = 0, it follows that the third of the 

expressions (A 12) is fulfilled for any value of c. If we set 

c = -33Ao (4.14) 

it can only reflect on the way in which 6 depends on the physical flow 

parameters. Equation (4 13) will then take the following form 

zJU - 9rooy = 3S60 (4.15) 

and thus the problem of inverting the linear operator reduces to solving 
an ordinary differential equation. 

5. Solution of the differential equation. We are dealing with 

the equation 

y” - 9zoy = f (cp) (5.1) 

where f(q5) is an even periodic function with period 2K. The problem is 

to find a solution which must also be an even periodic function. We find, 
first of all, linearly independent solutions of the homogeneous equation. 

One of the solutions is ~~(4) = r 0 ‘(4) whilst the second is found from 

Liouville' s formula 

(5.2) 

From Formula (3.11) we obtain 

z1 (cp) = cncp snap dn ‘p (5.3) 

And, it follows that 

z2 (cp) = cncp snap dnrp s d? 
c n2’p sn2v d n2’p (5.4) 

It is easy CO verify the following identities: 
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1 =‘+ 1 + k2 cn2T 
cn‘$ sn’%p dn2q sn2rg cn2q dn2q =&-i-&&&j& (5.5) 

Introduce the definitions 

a 0 0 

(5.6) 

zq (cp) = cncp dncp snap { 01 i- -&j 02 -- $2 @,I 
(5.7) 

The integrals in Formulas (5.6) are evaluated in an elementary fashion 

(5.8) 

- {dn2 tdt] 

03 ((p) =A[-dn"tdt - /c2'v, 

0 

Theorem 5.1. Function z,(4) can be put in this form: 

22 (rp) = R rpz1 (cp) + c (cp) 

where B is a number, and <(+) is an even function of period K. 

PFOOf: we note first Of all that 

(5.9) 

‘p 

5 dn2tdt =;$$I +x(q) (5.10) 

0 

where x($) is a periodic function and E(k) and K(k) are corrplete elliptic 

integrals of the second and the first kind. Then it follows from (5.9) 

that 

(5.11) 

Here x1 I x2# x3 are periodic functions. Substituting these expressions 

in (5.4) we obtain Formula (5.9), and thus 

B = - & [(I + I8 + ,V4) E --K (IL4 + /Y2)l (5.12) 
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and the theorem is proved. We will now demonstrate how to find periodic 

solutions to Equation (5.1). 'Ibe general solution depends on two axhi- 

trary constants. 'Ihe condition of evenness determines one arbitrary con- 

stant. lhus the even solution takes the following form: 

Y = 22 0~) [ f (0~1 (4 dt - 21 0~) 5 f (4 22 (t) dt + cz2 (cp) (5.13) 

K 0 

We will determine the arbitary constant c from the periodicity condi- 

tion. Because of periodicity y(qb + 2K) - y(4) = 0. On the other hand 

c+2K 

~((~+2K)-z/((cp) =[~2(cp+2K)--2(cp)l \ fzldtt 
K 

Q+2K 

+ 22 (cp) [ \ fn dt - \ fzl dt; - zl (cp) i”i” fz2 dt - 5 fz2 dt] + 
K K 0 0 

+ c 122 (cp + 2K) - 22 (cp) 1 (5.14) 

Because of (5.9) the equation holds 

22 (cp + w - 22 (rp) : 2BK.a (cp) 

Owing to the fact that f(q5) is an even periodic function, whilst 

z,(4) is odd, we have 

Q+2K 

1 f (t) 21 (t) dt - 5 f ( ) t .a (t) dt = 5 f.z~ dt - f fzl dt = [ fz, dt = 0 
K K -K k -K 

rp+2K 

\ fzz dt - j fzzdt = ‘+fK fz2dt - \ fzzdt = [ fzz (t + 2K) dt - (5.15) 
0 0 K K -K 

- ifzzdt= \ fzzdt+2BK [ fzldt+rfz2dt= [ fzzdt+2BK[fzldt 
K -K -K Q -K K 

If we substitute these expressions in (5.14) we obtain 

K Q 

2BKz15 fz1 dt - zl[ 2 \ fzz dt + 2BK \ fzl dt] + 2BKzl ((p) c = 0 (5.16) 
K 0 -K 

This identity will be satisfied if we put 

K 

c= &- jz2 dt 
s 
0 

(5.17) 
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Thus we prove the following theorem: 

Theorem 5.2. If f($) is an even periodic function with period 2K, 

then the equation y"- %,y = f(+) has a solution which will also be an 

even periodic function 

Y=Nf (5.18) 

where N is a linear operator, d t e ennined by an equation of the type 

Nf = zz (q)\ fzldt--n(~)~fz,dt+~lj fzzdt (5.19) 
i 6 0 

6. Functional spaces B, and B,. Let B, be a Banach space of con- 

tinuous odd periodic functions of period 2K, the nom of an element of 

which is determined by 

Let B, be a space of even continuous periodic 

(6.1) 

functions with nom 

(6.2) 

Denote by B a Banach space whose elements consist of pairs ~(0, r) 
where 8~ B, andrEr'B2, whilst the noxm is equal to 

II ” II = {II -iI II2 + II f3 a+ (6.3) 

Note that when k’-= 0 the spaces we have introduced degenerate into 
spaces which have been used by Friedrichs and Hyers in their proof of 

the existence of the solitary wave. In what follows we will always assume 

that 

0 < k'2 < f (6.4) 

We will now deduce several inequalities for elliptic functions which 

we will have occasion to use frequently. 

Note that when 0 <'+ <K 

w K K 

O<cncp\(dncp<l, s * dn2t dt < 
s 

dn2t dt < 
s 

dnt dt = $ (6.5) 

0 0 0 

Let I/J = am 4, we then have 
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(6.6) 
0 II 0 

Furthermore, it is easy to see that k’cn*+ = dn*qb - k’*, integrating 
this identity from 0 to K, we obtain 

E - k’aK=kzjcn~d~>;~cn~~sngdnpd~=t (6.7) 

‘IReorem 6.1. Wlatever th: value of k' ‘from the interval [ 6. I/ d/21 , 
operator N acts both from and to B, and is limited, i.e. it should be 
possible to find a constant c1 independent of k’; such that 

proof: Because ( f 1 < I/ f 11 dn g5, then, from (5.19) we have 

zldnt dt + .a ((p) [ I zz ( dnt dt + -!$\, 1 z2 1 dnt dt) (6.8) 

Q 0 0 

Let us first of all evaluate 1 z,(+) I , On the basis of (5.5) z,(+) can 
be represented as 

Because the function dn qS is a decaying one, we hve 

where Q, and a2 are determined from the formulas (5.8). In consequence 
of (6.5 and (6.6) f 

cncpsncpdncp(~l(cp)!<~n+l +$n= 1 +n (6.11) 

Now evaluate $, First of all observe that 
‘p 0 

s 
* dn2 tdt = 

s 
dnt (dnt -- kcnt) dt - ksncp = 

0 0 
Q 

= 1 * _!!.!!~,~~$$!!~~~ dt _ ksncp = )/a 5 dntdttk, nt dt _ ksncp (6.12) 

0 0 
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Further 

sncpdncp 
~-- ksnrp = sn Hdncp-kcncp) = k’%ncp 

cncp cncp cnrp (dncp + kcncp) 
(6.13) 

Therefore, because of (5.8) 
(6.14) 

G!(q) =cp ++-pq$ - [ dn2t dt] = cp + cncp (dlz ksmp) + [ dntdlkd,‘nt 
0 0 

lherefore 

(6.13 

If we make use of estimate (6.6), we obtain 

cncpsncpdncpj~2(cp)I<l +n (6.16) 

Inserting inequalities (6.16) and (6.11) into (6.10) we find that 

/ 22 (Cp)( < 3(sqn) 

Insert now estimate (6.17) into (6.8) 

Eht 

K 
dt 

s > 
_ 
dnt 

0 

(6.17) 

(6.18) 

(6.19) 
K K 42 

s 
cnt snt dn2t dt = -!.- ‘lnacp - k’Y <+di?q, 'i-& A 

s 

du n 

2k2 3 1 -kk2sinlu ==- 

v “0 0 

Let us estimate, furthermore, the value of BK. In accordance with 

(5.12) 

1 BK 1 = -& { (1 -t_ k4 + k’4) B - K (k’? -; 114)) 

Wit, when O< 2k’2 < 1 

(6.20) 

lL+ + k’4 _ (k2 + k’2)2 _ 2k2],.‘2 > 1 _ h.3 h k’” 

Therefore, on the basis of (6.7) 
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) ML 1 > & (1 t- k’2) (E - k’2K) > & > & (6.21) 

If we insert the estimates (6.19), (6.20) and (6.21) into (6.18), and 
take account of (6.6), we arrive at 

[NfI<(If[jdncp3(1 +n)($-i- 1 -t9n(l +n)) (6.22) 

Owing w the fact that the number inside the brackets is independent 
of k’, we have the confirmation of Theorem 6.1. 

Theorem 6.2. Operator Mf = dLVf)/& is bounded and acts from B, to B,. 

‘Ihe proof is similar to that of ‘Iheorem 6.1. 

lheorem 6.3. C$erator Sf operates from B, to B, and from B, to B, and 
is bounded. 

Proof: by definition 

Therefore 

Sf =‘i f ((P) da, (6.23) 
K 

But if 0 < y < n/2, we have 

siny~y(l-~)>,y(l-_~)>,$y (6.24) 

If we take y = n/2 - am q5, we obtain 

3t / 2 - amcp < 2cos amcp 

and hence it follows that 11 Sf 11 < 2 II f II 

= 2cnrp < 2dq 

Theorem 6.4. Operator T acts from space B, 

IITf II <4llfll p moreover C, is independent 

Proof. Remembering the definition (3.5) of 

to B, and is bounded, i. e. 
of k’ ande. 

the operator T we have 
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We give an estimate for the functions 

A (cp) = f dn t+- td t, B(T) = [ dnt.k--(K - t)dt (6.26) 

0 v 

It is obvious that 

and from this 

A(F) < 5 
dncpainh(&,,/q4 

l--E/& 
(6.28) 

m 

It is even simpler to estimate B(4). Because &J $ is a monotonic func- 
tion we have 

If we bear in mind that 

we obtain 
M 

Let us evaluate the sum of the series. The quantities A, 

inequality 

ma-c < X, < ma-f. + 3-c / 2 

Letr < n/2, then l- r/A,> l- l/2= l/2, and thus 

- ‘p) (6.29) 

(6.30) 

(6.31) 

satisfy the 
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Now from (6.31) it follows that 

In a similar way we can show that operator Vf acts from B, to B, and 
i s 1 imi ted. 

7. Existence theorem. It follows from the results of Section 5 

that Equation (4.15) possesses an even periodic solution, 

y = 3NSsa, y’ = 3MS8u (7.1) 

where the operator f+! is determined within the conditions of Theorem 6.2. 
We then obtain from (4.71 and (4.6) a system of nonlinear equations for 

68 and&r 

be= - 3MS8u + 2neTbf, 8z = 3NS8o-22neaV8f--$e%Bf (7.2) 

where 6 a is determined by f 4.91. If 9 E Bi and r~ Bs, we obtain 

Sf E Bl, VSf E Bz, T8f E BI, SSf E Be, TO’ E BI, Sfl E BI 

‘Ihen it follows from (4.9) that Ew E Br. Because of Theorems 6.1 and 
6.3 

MS&r E BI, NS&r E Ba 

bations (7.2) can now be written as 

88 = Elba+, 82 = Ee8w (7.3) 

where 6 o is in fact (6 B, 6 r 1 whilst E, and E, are nonlinear operators 
acting from B to B, and B,, respectively. Denoting by E the pair of 
operators 

E = (El, Ez) (7.4) 

the system of equations (7.2) cm be written as one functional equation 
in the space B 

80 = E8u (7.5) 

It is easy to show that this equation can be solved by successive 

approximations. Indeed E6 o can be put in the form 

E6w = e (G8f + Gdfl) (7.6) 

where G and G, are linear operators acting from B, to B. We must show 
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that there exists in the space B a sphere whose radius is such that the 
operator E maps this sphere onto its interior, whilst the magnification 

condition of the mapping is fulfilled, i.e. 

where d < 1. Denote by F and F, the nonlinear operators which relate 

80~~ B, Sf and6fl, i.e. 

F&U = 6f, F16~ = Sfl (7.8) 

Ihe proof that the operator E gives a compressed mapping is equivalent 

to the following: to show that if 60 varies over a limited set in space 

B, constants M,, M2, M3 and M4 of such a kind will be found that 

But inequalities (7.9) are easily proved, because Sf and Sfl are 
analytic functions of 66 and 87. It follows directly from this that 

when E is sufficiently small operator E will give a compressed mapping. 

Thus we have been able to prove the following existence theorem. 

It is possible to find a number c,,, such that the boundary-value prob- 

lem (l.10) will have a solution which depends on tHFo parameters 6 and k’, 
ifO<C<cO, 06 k’ -c l/d2. 

8. Relating of parameters rand k’ to the physical parameters 
determining the motion. It is known that steady wave motion is de- 
termined by two non-dimensional parameters. It follows from the results 

of Section 1 that u and R/A can be taken as such parameters. It follows 

from (l.8) that the period in the physical plane coincides with that of 

the complex potential. From Equations (3.2) we have 

VT;, IT (9) = &2T0 (cp"), 8 (cp) = &W (cp") (8.1) 

Because period r" ($) and O"($o) equals 2K, period r($) equals 2k/t, 

and thus 

Now observe that the period can tend to infinity in tw cases; (1) k 
is fixed, 6 -P 0. From (8.1) it follows that within the limits T (4) and 

0(+) give zero identically, i.e. the cnoidal wave degenerates into a 

plane parallel flow. This is in fact the case studied by Littman. 
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(2) E is fixed, k + 1. Within the limits a solitary wave is obtained. 

Relation (8.2) gives the relation between X and 6 and k’. Fkpression 

(l.13) gives the relation between v and c and k’. It can be written as 

or, making use of (8.2) we obtain 

(8.3) 

(8.4) 

If we make use of the theorem of implicit functions, it is easy to 

demonstrate that for small values of E Equation (8.4) can be solved in 

terms ofr. when E is small v is close to unity. It is easy to deduce 
approximate formulas connecting wavelength with amplitude and velocity. 

'Ihis is not done here because these formulas were derived in a simpler 

mannerin[6]. 
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